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I. INTRODUCTION

Particle-hopping models have been used widely in the recent years to study the spatio-
temporal organization in systems of interacting particles driven far from equilibrium. Often
such models are formulated in terms of cellular automata (CA). Examples of such systems
include vehicular traffic and pedestrian flow [1, 2] where their mutual influence is captured by
the inter-particle interactions. Usually, these inter-particle interactions tend to hinder their
motions so that the average speed decreases monotonically with the increasing density of the
particles. In a recent letter [3] we have reported a counter-example, motivated by the flux
of ants in a trail [4], where, the average speed of the particles varies non-monotonically with
their density because of the coupling of their dynamics with another dynamical variable. In
this paper, we show some recent developements on cellular automaton models of pedestrian

flow and ant trail.

II. PEDESTRIAN MODEL

Recent progress in modelling pedestrian dynamics [5] is remarkable and many valuable
results are obtained by using different models, such as the social force model [6] and the floor
field model [7, 8]. In this paper, we will propose a method to construct the static floor field
for complex rooms of arbitrary geometry. The static floor field is an important ingredient of
the model and has to be specified before the simulations. Basic rule of the model is seen in
the previous papers [7, 8], thus we will omit the explanation of this model and concentrate

only on the construction of the static floor filed. We propose a combination of the visibility
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FIG. 1: Example for the calculation of the static floor field using the Dijkstra method. (a) A
room with one obstacle. The door is at O and the obstacle is represented by lines A — H. (b)
The visibility graph for this room. The real number on each bond represents the distance between

them as an illustration.

graph and Dijkstra’s algorithm to calculate the static floor field. These methods enable
us to determine the minimum Euclidian (L?) distance of any cell to a door with arbitrary
obstacles between them.

Let us explain the main idea of this method by using the configuration given in Fig. 1(a)
where there is an obstacle in the middle of the room. We will calculate the minimum distance
between a cell P and the door O by avoiding the obstacle. If the line PO does not cross the
obstacle A — H, then the length of the line, of course, gives the minimum. If, however, as in
the example given in Fig. 1(a), the line PO crosses the obstacle, one has to make a detour
around it. Then we obtain two candidates for the minimum distance, i.e., lines PBAQO and
PCDHO. The shorter one finally gives the minimum distance between P and O. If there
are more than one obstacle in the room, then we apply the same procedure to each of them
repeatedly. Here it is important to note that all the lines pass only the obstacle’s edges
with an acute angle. It is apparent that the obtuse edges like £ and F' can never be passed
by the minimum lines. To incorporate this idea into the computer program, we first need
the concept of the wvisibility graph in which only the nodes that are visible to each other
are bonded [9] (“visible” means here that there are no obstacles between them). The set of

nodes consists of a cell point P, a door O and all the acute edges in the room. In the case

of Fig. 1(a), the node set is {P,0, A, B,C,D,G, H} and the bonds are connected between



A— B, A— H, and so on (Fig. 1(b)). Each bond has its own weight which corresponds to
the Euclidian distance between them.

Once we have the visibility graph, we can calculate the distance between P and O by
tracing and adding the weight of the bonds between them. There are several possible paths
between P and O, and the one with minimum total weight represents the shortest route
between them. The optimization task is easily performed by using the Dijkstra method
[9] which enables us to obtain the minimum path on a weighted graph. Performing this
procedure for each cell in the room, the method allows us to determine the static floor field
for arbitrary geometries. We can make use of this static floor field to simulate evacuating

processes under realistic situations.

III. ANT TRAIL MODEL

The ants communicate with each other by dropping a chemical (generically called
pheromone) on the substrate as they crawl forward [10, 11]. In [3] we developed a particle-
hopping model, formulated in terms of stochastic CA, which may be interpreted as a model
of unidirectional flow in an ant-trail. The effects of counterflow, which are important for
some species, will be investigated in the future.

The model can be written as the coupled equations[12]

Si(t4+1) = S;(t) + min(n;—1(t), Sj-1(t),1 — S;(t)) — min(n;(t), S;(t), 1 — Sja(t)), (1)
oi(t+1) = max(S;(t + 1), min(0;(),;(1))), (2)

where ¢ and n are stochastic variables defined by &;(¢t) = 0 with the probability f and
¢£;(t) =1 with 1 — f, and n;(¢) = 1 with the probability p = ¢+ (Q — q)o;41(t) and 7;(t) =0
with 1 — p.

The fundamental diagram, which is the density-dependence of the average speed in our
ant-trail model is shown in Fig. 2(a). Over a range of small values of f, it exhibits an
anomalous behaviour in the sense that, unlike common vehicular traffic, the average velocity
is not a monotonically decreasing function of the density p. Instead we have found that a

relatively sharp crossover can be observed where the speed increases with the density.
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FIG. 2: The average speed (a) and flux (b) of the ants, extracted from computer simulation data,
are plotted against their densities for the parameters @ = 0.75,¢ = 0.25. The discrete data points
corresponding to f = 0.0005(Q), 0.001(c), 0.005(e), 0.01(A), 0.05(0), 0.10(x), 0.25(+), 0.50(x)

have been obtained from computer simulations.
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